Hepatic portal venous delivery of a nitric oxide synthase inhibitor enhances net hepatic glucose uptake.

نویسندگان

  • Mary Courtney Moore
  • Catherine A Dicostanzo
  • Marta S Smith
  • Ben Farmer
  • Tiffany D Rodewald
  • Doss W Neal
  • Phillip E Williams
  • Alan D Cherrington
چکیده

Hepatic portal venous infusion of nitric oxide synthase (NOS) inhibitors causes muscle insulin resistance, but the effects on hepatic glucose disposition are unknown. Conscious dogs underwent a hyperinsulinemic (4-fold basal) hyperglycemic (hepatic glucose load 2-fold basal) clamp, with assessment of liver metabolism by arteriovenous difference methods. After 90 min (P1), dogs were divided into two groups: control (receiving intraportal saline infusion; n = 8) and LN [receiving N(G)-nitro-L-arginine methyl ester (L-NAME), a nonspecific NOS inhibitor; n = 11] intraportally at 0.3 mg x kg(-1) x min(-1) for 90 min (P2). During the final 60 min of study (P3), L-NAME was discontinued, and five LN dogs received the NO donor SIN-1 intraportally at 6 mug x kg(-1) x min(-1) while six received saline (LN/SIN-1 and LN/SAL, respectively). Net hepatic fractional glucose extraction (NHFE) in control dogs was 0.034 +/- 0.016, 0.039 +/- 0.015, and 0.056 +/- 0.019 during P1, P2, and P3, respectively. NHFE in LN was 0.045 +/- 0.009 and 0.111 +/- 0.007 during P1 and P2, respectively (P < 0.05 vs. control during P2), and 0.087 +/- 0.009 and 0.122 +/- 0.016 (P < 0.05) during P3 in LN/SIN-1 and LN/SAL, respectively. During P2, arterial glucose was 204 +/- 5 vs. 138 +/- 11 mg/dl (P < 0.05) in LN vs. control to compensate for L-NAME's effect on blood flow. Therefore, another group (LNlow; n = 4) was studied in the same manner as LN/SAL, except that arterial glucose was clamped at the same concentrations as in control. NHFE in LNlow was 0.052 +/- 0.008, 0.093 +/- 0.023, and 0.122 +/- 0.021 during P1, P2, and P3, respectively (P < 0.05 vs. control during P2 and P3), with no significant difference in glucose infusion rates. Thus, NOS inhibition enhanced NHFE, an effect partially reversed by SIN-1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of hepatic metabolism by enteral delivery of nutrients.

The liver plays a unique role in nutrient homeostasis. Its anatomical location makes it ideally suited to control the systemic supply of absorbed nutrients, and it is the primary organ that can both consume and produce substantial amounts of glucose. Moreover, it is the site of a substantial fraction (about 25 %) of the body's protein synthesis, and the liver and other organs of the splanchnic ...

متن کامل

A Soluble Guanylate Cyclase–Dependent Mechanism Is Involved in the Regulation of Net Hepatic Glucose Uptake by Nitric Oxide in Vivo

OBJECTIVE We previously showed that elevating hepatic nitric oxide (NO) levels reduced net hepatic glucose uptake (NHGU) in the presence of portal glucose delivery, hyperglycemia, and hyperinsulinemia. The aim of the present study was to determine the role of a downstream signal, soluble guanylate cyclase (sGC), in the regulation of NHGU by NO. RESEARCH DESIGN AND METHODS Studies were perform...

متن کامل

Effects of the nitric oxide donor SIN-1 on net hepatic glucose uptake in the conscious dog.

To determine the role of nitric oxide in regulating net hepatic glucose uptake (NHGU) in vivo, studies were performed on three groups of 42-h-fasted conscious dogs using a nitric oxide donor [3-morpholinosydnonimine (SIN-1)]. The experimental period was divided into period 1 (0-90 min) and period 2 (P2; 90-240 min). At 0 min, somatostatin was infused peripherally, and insulin (4-fold basal) and...

متن کامل

Regulation of net hepatic glucose uptake: interaction of neural and pancreatic mechanisms.

Insulin and glucagon levels, the mass of glucose presented to the liver and the portal signal are important regulators of the liver's response to glucose delivery. The portal signal not only serves to direct glucose into the liver but also appears to stimulate its deposition in glycogen. Moreover, the portal signal impacts on tissues other than the liver: intraportal glucose delivery is associa...

متن کامل

A Cyclic Guanosine Monophosphate–Dependent Pathway Can Regulate Net Hepatic Glucose Uptake in Vivo

We previously showed that hepatic nitric oxide regulates net hepatic glucose uptake (NHGU), an effect that can be eliminated by inhibiting hepatic soluble guanylate cyclase (sGC), suggesting that the sGC pathway is involved in the regulation of NHGU. The aim of the current study was to determine whether hepatic cyclic guanosine monophosphate (cGMP) reduces NHGU. Studies were performed on consci...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Endocrinology and metabolism

دوره 294 4  شماره 

صفحات  -

تاریخ انتشار 2008